
Toward Real-time, Many-Task Applications

on Large Distributed Systems

Sangho Yi1, Derrick Kondo1, and David P. Anderson2

1 INRIA, France
{sangho.yi,derrick.kondo}@inrialpes.fr

2 UC Berkeley, USA
davea@ssl.berkeley.edu

Abstract. In the age of Grid, Cloud, volunteer computing, massively
parallel applications are deployed over tens or hundreds of thousands
of resources over short periods of times to complete immense compu-
tations. In this work, we consider the problem of deploying such appli-
cations with stringent real-time requirements. One major challenge is
the server-side management of these tasks, which often number in tens
or hundreds of thousands on a centralized server. In this work, we de-
sign and implement a real-time task management system for many-task
computing, called RT-BOINC. The system gives low O(1) worst-case ex-
ecution time for task management operations, such as task scheduling,
state transitioning, and validation. We implement this system on top
of BOINC, a common middleware for volunteer computing. Using mi-
cro and macro-benchmarks executed in emulation experiments, we show
that RT-BOINC provides significantly lower worst-case execution time,
and lessens the gap between the average and the worst-case performance
compared with the original BOINC implementation.

1 Introduction

Workloads on Grid, Cloud, and Volunteer Computing platforms often consist of
tens or hundreds of thousands of parallel tasks that must be processed in short
amounts of time on the order of hours or days [1]. In this work, we focus on
real-time applications of similar size where the deadline per task is on the order
of seconds or tens of seconds. Important applications include online strategy
games (such as Go [2] or Chess [3]), interactive visualization [4] (possibly with
precedence constraints), and real-time digital forensics [5].

Our aim to enable the execution of real-time applications on large (on the
order of 10,000 nodes) distributed systems, such as volunteer computing plat-
forms. Volunteer computing platforms use the free resources in Intranet and
Internet environments for large distributed computation, and currently provide
over 8 PetaFLOPS of computing power for over 50 applications. However, these
applications are limited to mainly high-throughput jobs or large batch jobs.

There are three main challenges for supporting real-time applications. First,
one must ensure or predict the availability of volunteers. This has been the sub-
ject of recent work described in [6–8]. Second, one must bound network latency



between the server and clients. Much work also exists on network distance that
one could leverage [9]. Third, management of hundreds of thousands of tasks on
the server must be efficient and in particular, have bounded execution time.

In this work, we focus on the third challenge. Server-side management in-
cludes task generation, the transition of task and result states, and scheduling.
These management functions can incur significant overheads, given that the de-
sired job makespans are on the order of seconds and the number of tasks per job
in on the order of tens of thousands.

The main contribution of this work is the design and implementation of
a real-time management system, based on a popular middleware for volunteer
computing called BOINC. Our system RT-BOINC gives low worst-case bounds
on server-side task management, while minimizing the gap between worst-case
and average execution time. Our approach is to use novel data structures (in
particular multi-level lookup tables) and functions that ensure O(1) worst-case
complexity. In emulation experiments with our prototype, we show performance
improvements of often 2 orders of magnitude compared to the original BOINC.

The remainder of this paper is organized as follows. Section 2 describes re-
lated work in volunteer computing environments. Section 3 presents the design
and internal structures, and implementation of RT-BOINC. Section 4 evaluates
performance of RT-BOINC and the original BOINC in terms of both the average
and worst-case execution time. Finally, Section 5 presents conclusions and future
work.

2 Related Works

Volunteer computing systems, such as XtremWeb and Condor, are tailored for
maximizing task throughput, not minimizing latency on the order of seconds.
For instance, in [1], Silberstein et al. proposed GridBot, which provides efficient
execution of bags-of-tasks on heterogeneous collections of computing platforms
including grid, volunteer, and cluster computing environments virtualized as a
single computing host. While the system uses a hierarchical task management
system, the system cannot provide the task-level guarantees of execution time.

Hierarchical systems can improve server performance but they still often do
not provide any guarantee of performance in terms of worst-case execution time.
For instance, in [10], Kacsuk et al. proposed a SZTAKI desktop grid, which is a
hierarchical system developed on top of BOINC server structures. They modified
the original BOINC server to have multiple levels of workunit distribution. By
doing this, SZTAKI can reduce load on the primary BOINC server by using the
second and third-level BOINC servers. But, each level of BOINC servers still
has the same characteristics of the original BOINC, which performance is not
guaranteed.

Dedicated supercomputers can run real-time tasks, but volunteer computing
could be an low-cost alternative if it could support real-time guarantees. In the
domain of complex strategy games, Deep Blue [3] was the first machine defeat
the human world champion in 1996. IBM developed a dedicated server system



for Deep Blue, and the server achieved about 11.38 GFLOPS on the LINPACK
benchmark. Since 2006, several researchers in the world have been developed
MoGo, which is software to find the next move in the game of Go. They adapted
Monte-Carlo-based algorithms, and now, they are as strong as the professional
Go players in the 9×9 small board based on the cluster computing machines[2].

Grid gaming middlewares [11] have been developed and address issues such as
adaptive redirection of communication or computation given variable load. They
also address issues such as high-level easy-to-use programming interfaces, and
monitoring tools for capacity planning. We believe our work on giving worst-
based bounds on execution time is complementary with those methods. For
example, our techniques guarantee performance given that the data can be store
entirely in the server’s memory; this in turn could be used with capacity planning
tools to determine when to replicate a server.

3 Design and Implementation of RT-BOINC

In this section, we briefly describe the internal structures of BOINC, and we
present some requirements for computing real-time and interactive tasks in vol-
unteer computing environments. Then, we present the design and implementa-
tion of RT-BOINC in detail.

3.1 The original BOINC

BOINC server consists of two main parts, namely the main database, and server
daemon processes (feeder, transitioner, assimilator, validator, file-deleter, work-

generator, and scheduler).

Fig. 1. Internal structures of BOINC server

When the project-manager sends work for the BOINC server, the work-

generator creates several workunits on the main database. Then, transitioner



makes workunit-results pairs on the database. The pairs are fed to the scheduler

by the feeder, and they are distributed to multiple BOINC hosts. When each
host returns its result, the scheduler reports it to the validator. When the vali-
dation is completed, the data will be processed and finalized by the assimilator.
Finally, the project-manager can get the assimilated results from BOINC server.

BOINC projects use the same structures described in Fig. 1. Each project
should be aware of the performance bottlenecks in the BOINC projects if we
need guaranteed performance. BOINC is geared towards large and long-term
computation. The execution time of each workunit is relatively long enough, so
that the BOINC server performs a relatively small amount of work distribution
and reporting at the same time. Existing BOINC projects handle about 1 ∼ 10
workunits per second [12, 13].

However, in the case of computing highly-interactive and short-term tasks
with deadlines, the BOINC server must perform a relatively large number of
transactions per period to guarantee the worst-case performance. In Fig. 1, most
of the daemon processes read/write the main database. This means that the
execution time of each daemon process depends on the number of records n in
the database storing application, workunit, and result data, for example. MySQL
in particular has O(log n) ∼ O(n2) time complexity[14]. In addition, we found
that daemon processes have at least linear, and up to polynomial complexity3.
This makes it hard to provide relatively low worst-case execution time compared
with the average execution time for all data-related operations and processes.

3.2 Requirements for Interactive, Short-term, and Real-time

Parallel Applications

We describe the real-time requirements of the online game of Chess.

Fig. 2. An example of interactive, short-term, and real-time parallel tasks

Figure 2 shows an example calculating the next move. In this example, the
Chess player wants to determine the best move by using the volunteer computing

3 Complexities of processes; feeder : O(nw), assimilator : O(nw), validator : O(nw ·n2

r
),

transitioner : O(nw · nr), file-deleter : O(nr), work-generator : O(nw), and scheduler :
O(nr) where nw is the number of workunits and nr is the number of results.



environment. If we assume that the number of volunteer hosts is about 10,000,
and each move should be calculated within 10 seconds, then the expected number
of transactions between hosts and the server is 1,000 per second. This means that
the server should finish each transaction within 1 ms. If the applications need
guarantees of real-time execution, the worst-case execution time on the server-
side should be less than 1 ms for each transaction. To provide such a low bounded

execution time, the internal server structures should be designed to limit the gap
between the average and the worst-case.

3.3 Design of RT-BOINC

RT-BOINC was designed to provide guaranteed real-time performance for dis-
tributing work and reporting their results in the BOINC server. To do this, we
modified several components of BOINC server (see Figure 3), and added new
data structures and interfaces for retrieving them.

Fig. 3. Internal structures of RT-BOINC server

The major difference between the original BOINC and RT-BOINC is the
management of data records. RT-BOINC does not use the database, and uses
instead only in-memory data structures shared among daemon processes. We
also modified the internal structures of the server daemon processes to reduce
their complexity.

The original BOINC uses MySQL as the main DBMS, and this widens the
gap between the average and the worst-case execution time for reasons discussed
in Section 3.1. In RT-BOINC, we replaced the database with in-memory data

structures, which provide O(1) lookup, insertion, and deletion of data records.
The data structures are shared by several daemon processes via shared memory

IPC.



Data Structures for Real-time Operations Figure 4 shows an example of
retrieving data from the shared memory data structures. In this example, we
retrieve one result that has workunitid = 0x1234 from the result table, where
workunitid is a field of the result. In Fig. 4, two-level lookup tables are used
to reduce the maximum length of a list. In the worst-case, 256 entries will be
scanned in search of the workunit ID.

Fig. 4. An example of retrieving result in RT-BOINC

Figure 5(a) shows the case of inserting a new result to the data structures.
First, we need to find a place to store the new result. To do this, we use a lookup
pool for available (free) results. We can get an available result field’s ID at the
end of list, and remove the entry from list. Then, we can insert the result to
the data structure with constant time4. In Fig. 5(b), we see how to delete the
existing result from the data structures. If we want to delete the result which
has id = 1234, we insert the value 1234 to the end of lookup list. Then, we can
invalidate the result by removing the valid-flag of the result data5.

Server Processes in RT-BOINC As we mentioned, each daemon process
in BOINC has at-least linear time complexity for handling workunits and their
results. To reduce complexity by orders of magnitude, we modified the internal
structures of the server processes. We replaced all BOINC database-related code
with O(1) lookup, insertion, and deletion code. We removed unnecessary loops
and redundant code from the remaining parts of the server processes.

4 At the same time, we need to manage other lookup tables such as workunitid, which
are presented in Fig. 4.

5 If we have active lookup records for the result in other data structures, we should
delete them also.



Fig. 5. Data insertion and deletion examples in RT-BOINC

3.4 Prototype Implementation

We implemented RT-BOINC on top of the BOINC server source code6. The
full source code of RT-BOINC (prototype implementation) are available at the
following website: http://rt-boinc.sourceforge.net/

Data Format Compaction We reduced significantly the memory consumption
of the original data types of BOINC. We reduced unnecessary large blocks from
workunit, result, user, team, and many other data types. For example, one result

data has three huge fields to store XML code and standard output messages. The
size of each field is 64KB, which corresponds to the MySQL BLOB data type.
Then, each result record consumes more than 192KB, and if we have 10, 000
records on the server, this will consume more than 1.92GB of space for just
handling the result records. However RT-BOINC does not use the database nor
BLOB data types, so it does not need to consume as much space. We reduced
the size of each field by a factor of 8, and we also made similar reductions for the
other data types. Detailed information of data format compaction is available at
the following website: http://rt-boinc.sourceforge.net/dataformat.html

Data Structures and Interfaces We implemented the data structures using
shared memory IPC among several daemon processes. The prototype implemen-
tation of RT-BOINC supports up to 64K active hosts, which is reasonable based
on the size of most BOINC projects [15]. To provide O(1) lookup, insertion, and
deletion operations on the data structures, we used two-level lookup tables and
fixed-size list structures (see Figs. 4 and 5). We used a 4-bit lookup table for
each level, thus each lookup table has 24 = 16 fields (same as Fig. 4). Also,
we made a few limitations for the prototype version of RT-BOINC. We assume
that a workunit has a one-to-one relationship with a result. In our prototype,
the memory space overhead for the O(1) data structures is about 38.6% of the
total memory usage (where the total memory requirement is 1.09GB for 10, 000
hosts).

6 We used the server stable version of BOINC in November 2009.



3.5 Compatibility with the original BOINC

All of our modifications of the BOINC server source code preserve compatibility
with the original BOINC implementation and components (such as the client).
In Figs. 1 and 3, we can observe that the main components of RT-BOINC are
exactly the same as that of BOINC. RT-BOINC has the same set of server pro-
cesses, and the flow of work distribution and reporting is the same as the original
BOINC. Therefore, most of RT-BOINC server components are compatible with
the existing project configurations and their applications.

4 Performance Evaluation

We made micro and macro-level benchmarks to determine the performance of
both the low-level operations (such as insertion, update, and remove) and high-
level server processes (such as the feeder, transitioner, and validator). We mea-
sured performance in terms of the average, and the worst-case execution time of
these operations and processes in BOINC and RT-BOINC.

For the micro-benchmarks, we implemented a program that generates every
possible key value for the server-side operations. Key values correspond to user,
host, workunit, result id’s , and other id’s related to the performance.

For the macro-benchmarks, we implemented an emulator of the BOINC
client, which typically runs on each volunteered host. The emulated client uses
the identical protocol of the BOINC client for requesting workunits, and re-
turning results. Moreover, it uses the server processes in the same way as the
BOINC client itself. The emulated client generates server requests for all possible
key values.

With regard to the workunits, we used the uppercase application, which is a
synthetic application that converts contents of a text file to uppercase.

Table 1. Specification of the base server platform used in this paper

Component Description Notes

Processor 1.60GHz, 3MB L2 cache Intel Core-2 Duo with VT

Main memory 3GB (800MHz) Dual-channel DDR3

Secondary storage 64GB Solid State Drive SLC type

Operating system Ubuntu 9.10 Linux kernel 2.6.31-19

The setup in Table 1 allows us to measure the real performance in general-
purpose, off-the-shelf server system.

In Fig. 6(a), Y-axis is in log-scale, and most of execution times of operations
have more than a 2-step difference in terms of average execution time. In the
worst-case, most times have a 3-step difference (in Fig. 6(b)). This means that
RT-BOINC has improvements of more than 100-times for the average case, and



Fig. 6. Micro benchmark results of BOINC and RT-BOINC

almost 1, 000-times for the worst-case (which is presented in Fig. 6(d)). In ad-
dition, Fig. 6(c) shows that RT-BOINC’s performance gap between the worst
and average case is much lower than that of the original BOINC. Based on these
results, we can observe that RT-BOINC provides low worst-case execution time

compared to the original BOINC for each operation.

Figure 7 shows the results of each server process in BOINC and RT-BOINC
when the server has low-load conditions. In Fig. 7(a) and (c), the results show
almost a 1-step difference, and Fig. 7(b) shows almost a 2-step difference between
BOINC and RT-BOINC. The results show that RT-BOINC provides almost 100-
times lower worst-case execution time than BOINC. In Fig. 7(d), we can observe
that the performance gap of RT-BOINC is much lower than that of BOINC.

Figure 8 shows the same set of results when the server has conditions of
high-load. In these results, we observe almost a 1-step difference in the average-
case, and almost a 2.5-steps difference in the worst-case. Fig. 8(d) shows that
BOINC has a significant difference between worst-case and average-cases, which
RT-BOINC improves immensely.

From the results in Fig. 8, we found that the “end-to-end” transaction time

of one workunit going through all server processes in RT-BOINC is 4.1 ms for



Fig. 7. Macro benchmark results of BOINC and RT-BOINC (low-load: 1 host)

Fig. 8. Macro benchmark results of BOINC and RT-BOINC (high-load: 10,000 host)



average, and 31.2 ms for the worst-case when we do not consider pipe-lined par-

allel execution of the server processes. If the server can execute multiple threads
at the same time, the transaction time of each workunit decreases significantly.
For instance, in the average case, the server can perform 1, 000 workunits per
second with only 4 parallel threads of execution. The hardware setup in Table
1 supports this degree of parallelism. If the server supports 32 threads (as on a
standard dual quad-core processor with hyperthreading) with the same perfor-
mance presented in Fig. 8, the server can perform almost 1, 000 workunits per
second even in the worst-case.

Fig. 9. Worst-case execution time difference between low and high load conditions

In Fig. 9, BOINC shows a big difference in performance than RT-BOINC un-
der different load conditions wrt the number of hosts. This result has significant
meaning on both predictability and scalability of the server system. RT-BOINC
provides almost the same worst-case execution time, even if the server has signifi-
cant change of host load. Based on these results, we can observe that RT-BOINC
provides significantly low worst-case execution time compared with the original
BOINC.

5 Conclusions and Future Work

In this paper we proposed RT-BOINC, which is a platform for real-time and
highly interactive computing. This system can be used on any large distributed
system, such as Clouds, Grids, or Volunteer Computing platforms, where work-
loads consists of tens of thousands of real-time tasks. In RT-BOINC, every com-
ponent provides bounded execution time. Thus it helps to provide the guaranteed
execution of real-time applications. We implemented it based on the original
BOINC, and our evaluation results show that RT-BOINC has low worst-case

execution time and reasonable memory space usage compared with BOINC.
For future work, we are interested in the following issues for RT-BOINC.

First, we are interested in conducting dynamic shared memory management



when the server system does not have enough main-memory space. Second, we
are interested in studying the trade-offs between time and space of our data
structures.

Acknowledgments

This research was supported by supported the ALEAE project (INRIA ARC),
and the ANR Clouds@home project (contract ANR-09-JCJC-0056-01).

References

1. Silberstein, M., Sharov, A., Geiger, D., Schuster, A.: Gridbot: Execution of bags of
tasks in multiple grids. In: SC’09: Proceedings of the 2009 ACM/IEEE conference
on Supercomputing, New York, NY, USA, ACM (2009)

2. Lee, C.S., Wang, M.H., Chaslot, G., Hoock, J.B., Rimmel, A., Teytaud, O., Tsai,
S.R., Hsu, S.C., Hong, T.P.: The Computational Intelligence of MoGo Revealed
in Taiwan’s Computer Go Tournaments. IEEE Transactions on Computational
Intelligence and AI in games (2009)

3. Deep Blue (chess computer): http://en.wikipedia.org/wiki/Deep Blue (chess com-
puter). (website)

4. Lopez, J., Aeschlimann, M., Dinda, P., Kallivokas, L., Lowekamp, B., O’Hallaron,
D.: Preliminary report on the design of a framework for distributed visualiza-
tion. In: Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’99). (1999) 1833–1839

5. Capsicum Group: Digital Forensics: http://www.capsicumgroup.com/content-
pages/services/digital-forensics.html. (website)

6. Dinda, P.: A Prediction-Based Real-Time Scheduling Advisor. In: Proceedings
of the International Parallel and Distributed Processing Symposium (IPDPS’02).
(2002)

7. Sonnek, J.D., Nathan, M., Chandra, A., Weissman, J.B.: Reputation-based
scheduling on unreliable distributed infrastructures. In: ICDCS. (2006) 30

8. Andrzejak, A., Kondo, D., Anderson, D.P.: Ensuring collective availability in
volatile resource pools via forecasting. In: DSOM. (2008) 149–161

9. Ratnasamy, S., Handley, M., Karp, R.M., Shenker, S.: Topologically-aware overlay
construction and server selection. In: INFOCOM. (2002)

10. Kacsuk, P., Marosi, A.C., Kovacs, J., Balaton, Z., Gombs, G., Vida, G., Kornafeld,
A.: Sztaki desktop grid: A hierarchical desktop grid system. In: Proceedings of the
Cracow Grid Workshop 2006, Cracow (Poland) (2006)

11. Gorlatch, S., Glinka, F., Ploss, A., Müller-Iden, J., Prodan, R., Nae, V., Fahringer,
T.: Enhancing grids for massively multiplayer online computer games. In: Euro-
Par. (2008) 466–477

12. Catalog of BOINC Powered Projects - Unofficial BOINC Wiki: http://www.boinc-
wiki.info/Catalog of BOINC Powered Projects. (website)

13. Anderson, D.P.: Talk at Condor Week, Madison, WI, http://boinc.berkeley.ed-
u/talks/condor boinc 06.ppt. (2006)

14. MySQL: Developer Zone: http://dev.mysql.com/. (website)
15. BOINC Statistics: http://boincstats.com/stats/. (website)


